

Product Overview

FireStack
®
 is DapTechnology‟s homegrown 1394 software stack.

Initially developed in conjunction with the company‟s 1394 Link
Layer Controller FireLink

®
, the product was architected from

ground up in order to support the advanced features of the
FireLink

®
 IP (Basic and Extended) solution. Since then additional

mechanisms have been added to FireStack
®
 to enable support for

generic OHCI compliant Link layers.

But FireStack
®
 is also a specialty software stack as it targets

usage in areas where requirements deviate a bit from the
“standard” needs. For example, PCs and consumer electronics
implementations differ significantly from their industrial, vision and
aerospace counterparts. In many of these latter examples the
focus lies on performance, latency, robustness, etc.

Abstraction Layer (HW, OS)

Bus Management

Protocol API Protocol API

FireStack Core

1394 API
API

Conceptually, FireStack
®

addresses all these issues. It complies
with IEEE1394 requirements as well as select higher protocol
layers e.g. IIDC). And as the only product in the market it natively
supports Mil1394 (AS5643) features and functions. Due to the
time critical aspects of that AS5643 protocol the Mil1394 portion of
FireStack

®
 is only supported when running on top of an LLC with

embedded Mil1394 HW support (see FireLink
®
 and FireTrac

®
).

FireStack
®
 is also an alternative to using general purpose SW

implementations with standard OHCI I/O interfaces as it offers a
more deterministic approach. Modern plug & play solutions are not
always recommended for use in enclosed systems since they
typically add undesired bus traffic, latencies, etc.. The ability to
customize FireStack

®
 modules allows focusing on the task

requirements without unwanted system, traffic and data overhead.

Operating System Support

FireStack‟s OS support is targeted to support the major systems
used in the market segments described above. At the moment OS
support exists for:

Support for other operating systems will be added as the need
arises. Please contact DapTechnology for your specific
requirements.

Optimized Transaction Management

FireStack
®
 features an innovative 1394 packet handler, whose

objective is to reduce resource burden when receiving and
transmitting 1394 packets. The consistent utilization of zero-copy
operations greatly enhances the overall system performance.
FireStack

®
 provides memory buffers accessible by both the user

application and the 1394 Link Layer DMA engine.

For example, when transmitting an asynchronous packet and the
user application has filled the memory buffer with the needed packet
data, FireStack

®
will hand the buffer directly to the Link Layer for

reading the packet into the packet transmission FIFO without having
the CPU copy memory to memory.

Likewise, displaying a video stream from an IIDC camera only
requires creation of DMA-capable reception buffers for the video
frame data and registration of notification upon filling of a complete
frame. Once notified the buffers holding the received data can be
accessed directly by the video rendering engine in order to move
the data to video card memory.

Inbound Transactions (IBT):

Inbound Transactions (handling of incoming requests) are defined in
two separate methods:

Map Local Memory: The user can "map" a memory buffer to a
specific address space. The contents of the memory buffer can be
accessed by the user application at any point in time. At the same
time when the stack receives a request packet from a remote device
it will automatically perform the response operation (read, write or
lock) and will send a response packet back to the requester. The
user has the option to be notified by the notification callback function
when the transaction completes.

Transaction Handler: Similar to the Map Local Memory above the
user can "register for" a specific address space instead of "mapping"
local memory. When the stack receives a request packet it will call
the user-specified handler callback function. The user can then
perform any operation within the callback function. Upon returning
from the handler callback, the FireStack

®
 may transmit a response

packet. The notification callback function will be called after
completion of the response process.

Outbound Transactions (OBT):

This module can be used to perform memory transactions (read,
write, lock) on remote nodes. When a memory transaction is
initiated FireStack

®
 will automatically determine the maximum speed

to the destination node by performing the needed PHY remote
accesses.

Outbound Transactions can be used in the following ways with
respect to result indication: In Blocking mode the TX functions will
not return until the response packet is received and thus making the
code sequential. In contrast to that the Non-Blocking mode can be

used to initiate a series of “split” transactions i.e. a series of
requests that are then followed by the corresponding - but not
necessarily sequential - responses.

Isochronous Messaging:

The Isochronous Streaming modules build on the mechanisms for
efficient data processing defined by OHCI and provide a flexible and
user-friendly API around it. Linked lists of buffers can be setup by
the user application and will be automatically processed by the Link
Layer DMA engine. Notification mechanisms are available for buffer
and/or packet completion.

LabVIEWTM and LabWindowsTM are registered trademarks of National Instruments Corp. WindowsTM is a registered trademark of Microsoft Corp.
 VxWorks™ is a registered trademark of Wind River Systems Inc. IRIX™ is a registered trademark of Silicon Graphics Inc.

 (pending)

Serial Bus

Management

FireStack API

Abstraction

Core (Variables, Timers, Interrupts, Memory. etc.)

LAL (Link Abstraction Layer)

User

Support

Core

Mil1394 API IIDC API Other APIs

User Application
Application

OSAL (Operationg System Abstraction Layer)

Hardware

O
p

e
ra

tin
g

 S
y
s
te

m

Memory

Link Layer

CPU

FireLink

Basic

FireLink

Extended
OHCI LLC

Cycle Master

Module

Isochronous Resource Manager

Module

Isochronous Streams

Module

Bus Manager Module

Transaction Module

Low Level 1394

Module

Serial Bus Management

FireStack
® Serial Bus Management modules define protocols,

services, and operating procedures on how nodes can govern
the operation of the remaining nodes on the bus. Together with
CSR, configuration ROM facilities are used to configure and
manage the activities at an individual node. Bus Manager,
Isochronous Resource Manager and Cycle Master are optional
modules as they are not required for all 1394 implementations.

Application Programming Interface

FireStack
®
 offers an OS dependent user-space API with complete

1394 bus control. Additionally, higher-level layers will be and are
being developed on top of that to provide a very task oriented API.
This includes for example an API focused on controlling IIDC
cameras without needing explicit knowledge of 1394. Equally, the
Mil1394 API is targeting usage in the aerospace world without
requiring programmers to work at the basic 1394 level.

FireStack
®
 Core

FireStack® Core forms the engine of the software stack. Core
processes all functions such as user notification, interrupt event
handling, background processing tasks, packet (isochronous and
asynchronous) receive and transmit, memory allocations, timers,
etc.. FireStack® Core is not specific to any device or OS and is
designed to run on top of the Link and OS Abstraction Layers.

Abstraction Layers

Both the Link Abstraction Layer (LAL) as well as the OS
Abstraction Layer (OSAL) form the direct HW and operating
system interfaces for FireStack

®
. They are essential for allowing

FireStack
®

to run on a variety of HW/FW Link Layer
implementations, as well as for supporting several operating
systems without changing the upper layer stacks conceptually.

 (AS5643) Module

The Mil1394 (SAE-AS5643) protocol differs from other 1394
protocols because of its stringent timing requirements. Because
of potential inaccuracies and unpredictable latencies possible with
software implementations, DapTechnology strongly believes that
the Mil1394 protocol timing is best implemented via a HW
extension in the 1394b Link Layer. Therefore, Dap has added the
Mil1394 protocol timing in FireLink

®
 Extended as an add-on

module. With this HW support FireLink
®
 Extended is easily

capable of meeting the Mil1394 frame timing requirements and
eliminates the need for complicated interrupt schemes or real-
time operating systems typically needed to efficiently use the
Mil1394 protocol.

The FireStack
®
 software library contains a Mil1394 protocol

module that can be used to control the Mil1394 hardware of either
a custom FireLink Extended enabled product or DapTechnology's
FireTrac I/O card. This section describes how frame timing can be
configured and used for both timed transmission and reception.

Frame Timing: FireStack
®
 is very flexible in the way it handles

the timing of Start of Frames. Frame synchronization for Mil1394
reception and transmission may be configured as either “Free

Running” or internal clock (based on a 1 s input signal), based on STOF
packets on the bus (just any packet on a configurable channel) or on an
External Sync Input Signal.

Reception: Mil1394 reception provides a filtering mechanism and
all incoming packets will be run against a comprehensive
verification system. Messages can be filtered on channel number,
Mil1394 message ID or a combination of both.

Transmission: Mil1394 Transmission module can be used to
control devices that support Mil1394 timed transmission in
hardware – as done with DapTechnology's FireTrac

®
 and

FireLink
®
 Extended. FireTrac offers very accurate transmission

timing without software intervention enabling this functionality
without the need for a Real-Time operating system. The following
transmission modes are available:

Streaming messages: Allows writing large or small sets of
messages to FireStack

®
 and having them transmitted automatically at

specified frame offset times. The provided data needs to contain so
called frame separator elements to indicate that the following
message needs to be transmitted in the next frame.

Repeating messages: Allows setting up a message that will

automatically be transmitted each frame by the FireStack
®
. The user

will have a pointer to the actual data of the message and is allowed to
manipulate the data at any point in time without having to worry about
its timed transmission. This is very useful for Mil1394 status
messages.

Single messages: Allows simply transmitting a message as soon
as possible but exactly at the specified frame offset time. Several

messages may be handed to the FireStack
®
 for immediate

transmission and the FireStack
®
 will then take care of the actual

moment of transmission.

STOF Messages: Allows controlling transmission of STOF
messages.

References

The FireStack
®
 has been successfully deployed on the following

DapTechnology products:

 FireTrac
®
 AS6543 I/O card

 FireSpy
®
 S1600 (release pending)

 S1600 Host Adapter Card (release pending)

 FireLink Extended evaluation kit (Xilinx PPC)

Application Programming Interface (API)

FireStack
®
 provides an API with multiple levels of abstraction from

the 1394 bus. The User Support API allows for a very “1394-

unaware” application programming. Due to the very high degree of
abstraction the user does not have to be a 1394 expert for most of
the typical 1394 bus control and transaction handling tasks. This
high level API focuses on ease-of-use, low learning curve and
streamlined programming.

For very fundamental 1394 bus controls a Low Level API is
available. It can be used for operations on the basic 1394 level. For
example this API allows for remote PHY access, commands, bus
optimization, error condition testing, etc. As an example, it„s goal is
to provide CRC overwrite functionality in order to simulate
erroneous bus signaling as well as other advanced and non-
standard features within a SW stack. It is important to understand
that some of these features are (or will be) available on specialized
Link Layer controllers.

Configurability / Customization

The FireStack
®
 architecture supports a very modular SW design.

Several modules of the stack, e.g. the Isochronous Resource
Manager, Cycle Master and Bus Manager, can be compiled-in or
left out based on user needs. If compiled-in they can be disabled on
FireStack startup (if needed).

The default FireStack
®
 package contains all modules and license

keys used to unlock individual features. Based on customer
demand the deliverable can be customized with only the needed
modules included in order to reduce size and increase
performance.

Specifications:
 IEEE 1394-2008 compliant

- Low-Level API (packet TX/RX, topology, ...)
- Isochronous Streaming API
- Inbound Transactions API

- Memory Mapped
- Handler Mapped

- Outbound Transactions API
- Serial Bus Management API

 Support for High Level Protocols
- Mil1394 (AS5643)
- IIDC (pending)

 Supported Link Layer Controllers:
- FireLink

®
 Extended and

- FireLink
®
 Basic (pending)

- Select OHCI Link Layer Controllers

 Supported Operating Systems
- Windows XP and Windows 7 (32 bits and 64 bits)
- VxWorks 5.5 and later. Please contact for CPU support
- SGI IRIX
- LabView and LabView RT version 8 and later
- Linux (pending)
- Xilinx PPC. Please contact for porting to specific board.

 ….


 ………….
 ….


CONTACT INFORMATION:

DapTechnology B.V. DapUSA, Inc.
Zutphenstraat 67 780 W San Angelo Street
7575EJ Oldenzaal Gilbert, AZ 85233
the Netherlands United States of America
Ph: +31 541 532941 Ph: (480) 422 1551
Fax: +31 541 530193 Fax: (302) 439 3947
sales@daptechnology.com sales@daptechnology.com

www.daptechnology.com www.daptechnology.com

DocRev 2.5 JUL2010

Copyright © DapTechnology B.V., 1998 - 2010 - All Rights Reserved
DapTechnology cannot guarantee currentness and accuracy of information presented

http://www.daptechnology.com/

